The induced EMF (\( \mathcal{E} \)) in a loop is given by Faraday's law of electromagnetic induction:
\[ \mathcal{E} = \left| \frac{d\Phi}{dt} \right| \]
Magnetic flux (\( \Phi \)) through the loop is given by:
\[ \Phi = B \cdot A \]
Where:
- \( B \): Magnetic field strength
- \( A = \pi r^2 \): Area of the loop
The rate of change of flux is:
\[ \frac{d\Phi}{dt} = A \cdot \frac{dB}{dt} \]
Substitute the given values:
- \( r = 0.1 \, \text{m} \): Radius of the loop
- \( A = \pi (0.1)^2 = 0.01 \pi \, \text{m}^2 \)
- \( \frac{dB}{dt} = -0.02 \, \text{T/s} \): Rate of change of magnetic field
Substitute \( A \) and \( \frac{dB}{dt} \):
\[ \frac{d\Phi}{dt} = 0.01 \pi \cdot 0.02 = 0.0002 \pi \, \text{Wb/s} \]
Now calculate the induced EMF:
\[ \mathcal{E} = \left| \frac{d\Phi}{dt} \right| = 0.0002 \pi \]
Substitute \( \pi \approx 3.14 \):
\[ \mathcal{E} = 0.0002 \cdot 3.14 = 0.000628 \, \text{V} \]
\[ \mathcal{E} = 0.628 \, \text{mV} \]
The induced EMF in the loop is:
\[ \mathcal{E} = 0.628 \, \text{mV} \]
0 Comments