A solenoid of 500 turns has a length of 50 cm and a cross-sectional area of 4×10−4 m2. If the permeability of free space is 4π×10−7 T m/A, what is the self-inductance of the solenoid?





6.

A solenoid of 500 turns has a length of \( 50 \, \text{cm} \) and a cross-sectional area of \( 4 \times 10^{-4} \, \text{m}^2 \). If the permeability of free space is \( 4\pi \times 10^{-7} \, \text{T·m/A} \), what is the self-inductance of the solenoid?





... Answer is C)

The self-inductance (\( L \)) of a solenoid is calculated using the formula:

\[ L = \mu_0 \cdot \frac{N^2 \cdot A}{l} \]

Where:

  • \( \mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A} \): Permeability of free space
  • \( N = 500 \): Number of turns
  • \( A = 4 \times 10^{-4} \, \text{m}^2 \): Cross-sectional area
  • \( l = 50 \, \text{cm} = 0.5 \, \text{m} \): Length of the solenoid

Substitute the given values:

\[ L = \left( 4\pi \times 10^{-7} \right) \cdot \frac{\left( 500 \right)^2 \cdot \left( 4 \times 10^{-4} \right)}{0.5} \]

First, calculate \( 500^2 \):

\[ 500^2 = 250,000 \]

Substitute into the formula:

\[ L = \left( 4\pi \times 10^{-7} \right) \cdot \frac{250,000 \cdot 4 \times 10^{-4}}{0.5} \]

Simplify \( 250,000 \cdot 4 \times 10^{-4} \):

\[ 250,000 \cdot 4 \times 10^{-4} = 100 \]

Now substitute into the formula:

\[ L = \left( 4\pi \times 10^{-7} \right) \cdot \frac{100}{0.5} \]

Simplify \( \frac{100}{0.5} \):

\[ \frac{100}{0.5} = 200 \]

Now calculate \( L \):

\[ L = \left( 4\pi \times 10^{-7} \right) \cdot 200 \]

\[ L = 800\pi \times 10^{-7} \]

Substitute \( \pi \approx 3.14 \):

\[ L = 800 \cdot 3.14 \times 10^{-7} \]

\[ L = 2512 \times 10^{-7} \, \text{H} \]

\[ L = 2.512 \times 10^{-4} \, \text{H} = 0.2512 \, \text{mH} \]

The self-inductance of the solenoid is:

\[ L = 0.2512 \, \text{mH} \]





MCQ On Motion In Plane | Newton's Laws Of Motion | CBSE, IIT JEE, NEET, CET | Physics PYQ


Post a Comment

0 Comments