Young's Double Slit Experiment - Problems & Solutions
- (A) 0.3°
- (B) 0.15°
- (C) 15°
- (D) 30°
The angular fringe width in a medium is given by:
\( \theta' = \frac{\theta}{\mu} \)
Substituting \( \mu = 4/3 \), \( \theta = 0.2° \):
\( \theta' = \frac{0.2}{4/3} = 0.15° \)
Correct Answer: (B) 0.15°
- (A) Increase in width
- (B) Decrease in width
- (C) Remain unchanged
- (D) Not be formed
The fringe width \( \beta \) is given by:
\( \beta = \frac{\lambda D}{d} \)
Since \( \lambda' = \frac{\lambda}{\mu} \) in a medium, fringe width decreases.
Correct Answer: (B) Decrease in width
- (A) 2 fringes upward
- (B) 2 fringes downward
- (C) 10 fringes upward
- (D) None of these
The shift in fringes is given by:
\( n = \frac{t(\mu - 1)}{\lambda} \)
Substituting values: \( n = \frac{(2 \times 10^{-6})(1.5 - 1)}{5000 \times 10^{-10}} \)
\( n = \frac{10^{-6}}{5000 \times 10^{-10}} = 2 \) fringes.
Correct Answer: (A) 2 fringes upward
- (A) 2 cm, 7.5 cm
- (B) 3 cm, 6 cm
- (C) 6 cm, 3 cm
- (D) 2 cm, 4 cm
Fringe width is given by \( \beta = \frac{\lambda D}{d} \). When immersed in liquid, new fringe width is \( \beta' = \frac{\beta}{\mu} \). Hence, y-coordinates become \( 2 \) cm and \( \frac{5}{1.5} = 4 \) cm.
Correct Answer: (D) 2 cm, 4 cm
- (A) 0.30 mm
- (B) 0.40 mm
- (C) 0.53 mm
- (D) 450 micron
Fringe width in air is \( \beta = 0.4 \, \text{mm} \). In water, fringe width becomes \( \beta' = \frac{\beta}{\mu} = \frac{0.4}{4/3} = 0.3 \, \text{mm} \).
Correct Answer: (A) 0.30 mm
- (A) 1.8
- (B) 1.5
- (C) 1.3
- (D) 1.6
For bright fringe in liquid: \( y_{10} = \frac{10 \lambda D}{d \mu} \). For dark fringe in vacuum: \( y_6 = \frac{(6 - 0.5) \lambda D}{d} \). Equating the two, \( \frac{10}{\mu} = 5.5 \), so \( \mu \approx 1.8 \).
Correct Answer: (A) 1.8
- (A) \( \frac{I_0}{2} \)
- (B) \( \frac{I_0}{\sqrt{2}} \)
- (C) \( \frac{I_0}{4} \)
- (D) \( I_0 \)
When both slits are open, intensity at central maxima is \( I_0 \). When one slit is covered, intensity reduces to \( \frac{I_0}{4} \).
Correct Answer: (C) \( \frac{I_0}{4} \)
- (A) \( \frac{1}{\sqrt{2}} \)
- (B) \( \frac{\sqrt{3}}{2} \)
- (C) \( \frac{1}{2} \)
- (D) \( \frac{3}{4} \)
- (A) \( \frac{I_m}{9} (1 + 8\cos^2(\phi/2)) \)
- (B) \( \frac{I_m}{9} (4 + 5\cos \phi) \)
- (C) \( \frac{I_m}{3} (1 + 2\cos^2(\phi/2)) \)
- (D) \( \frac{I_m}{5} (1 + 4\cos^2(\phi/2)) \)
- (A) \( \arcsin\left(\frac{\lambda}{d}\right) \)
- (B) \( \arcsin\left(\frac{\lambda}{2d}\right) \)
- (C) \( \arcsin\left(\frac{\lambda}{3d}\right) \)
- (D) \( \arcsin\left(\frac{\lambda}{4d}\right) \)
Intensity \( I = \frac{I_0}{4} = I_0 \cos^2(\phi/2) \). Solving, \( \cos(\phi/2) = \frac{1}{2} \), so \( \phi/2 = \frac{\pi}{3} \) or \( \phi = \frac{2\pi}{3} \). Path difference \( \Delta x = \frac{\lambda}{2\pi} \cdot \phi = \frac{\lambda}{3} \). Angular position \( \theta = \arcsin\left(\frac{\lambda}{3d}\right) \).
Correct Answer: (C) \( \arcsin\left(\frac{\lambda}{3d}\right) \)
0 Comments