MHT- CET Trigonometric Problem
If \( \frac{\sin A - \sin C}{\cos C - \cos A} = \cot B \), then \( A \), \( B \), and \( C \) are in:
Detailed Solution
Problem: \( \frac{\sin A - \sin C}{\cos C - \cos A} = \cot B \). Find the relationship between \( A \), \( B \), and \( C \).
Step 1: We need to simplify the left side using trigonometric identities.
Step 2: Use Sum-to-Product Identities:
- \( \sin A - \sin C = 2 \cos \left( \frac{A + C}{2} \right) \sin \left( \frac{A - C}{2} \right) \)
- \( \cos C - \cos A = 2 \sin \left( \frac{A + C}{2} \right) \sin \left( \frac{A - C}{2} \right) \) (since \( \cos C - \cos A = -2 \sin \left( \frac{C + A}{2} \right) \sin \left( \frac{C - A}{2} \right) \), and adjusting signs)
Step 3: Substitute:
\( \frac{\sin A - \sin C}{\cos C - \cos A} = \frac{2 \cos \left( \frac{A + C}{2} \right) \sin \left( \frac{A - C}{2} \right)}{2 \sin \left( \frac{A + C}{2} \right) \sin \left( \frac{A - C}{2} \right)} = \frac{\cos \left( \frac{A + C}{2} \right)}{\sin \left( \frac{A + C}{2} \right)} = \cot \left( \frac{A + C}{2} \right) \)
Step 4: Equate:
\( \cot \left( \frac{A + C}{2} \right) = \cot B \)
Since \( \cot x = \cot y \) implies \( x = y + n\pi \), we get \( \frac{A + C}{2} = B + n\pi \). Assuming \( n = 0 \) (simplest case):
\( \frac{A + C}{2} = B \Rightarrow 2B = A + C \)
Step 5: Conclusion: \( 2B = A + C \) means \( A \), \( B \), \( C \) are in Arithmetic Progression (AP).
Answer: a) AP
0 Comments