Drift Velocity in Copper Wire – Numerical Solution
Question: There is a current of \(0.21\,\text{A}\) in a copper wire of area of cross section \(10^{-6}\,\text{m}^2\). If the number of electrons per m³ is \(8.4 \times 10^{28}\) and \(e = 1.6 \times 10^{-19}\,\text{C}\), the drift velocity is:
Detailed Solution:
The drift velocity \(v_d\) is given by:
\[ v_d = \frac{I}{n\,e\,A} \]
Where:
- \(I = 0.21\,\text{A}\)
- \(n = 8.4 \times 10^{28}\,\text{electrons/m}^3\)
- \(e = 1.6 \times 10^{-19}\,\text{C}\)
- \(A = 10^{-6}\,\text{m}^2\)
Compute the denominator:
\[ n\,e\,A = 8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 10^{-6} = 13.44 \times 10^{3} = 1.344 \times 10^{4} \]
Thus,
\[ v_d = \frac{0.21}{1.344 \times 10^{4}} \approx 1.562 \times 10^{-5}\,\text{m/s} \]
Correct answer: (a) \(1.562 \times 10^{-5}\,\text{m/s}\)
0 Comments