Free Online PYQ MCQ on Laws Of Motion 001

Previous Year JEE Mains Questions on Laws of Motion with Solutions

Previous Year JEE Mains Questions on Laws of Motion with Solutions

Explore a collection of previous year JEE Mains questions from the Laws of Motion chapter. Each question comes with a detailed solution, interactive multiple-choice options, and a "Show Answer" button. Test your understanding by selecting an option and instantly see if you're correct!

Question 1

A force acts for 20 s on a body of mass 20 kg, starting from rest. After the force ceases, the body travels 50 m in the next 10 s. What is the value of the force? [29-Jan-2023 Shift 2]

  • A. 40 N
  • B. 5 N
  • C. 20 N
  • D. 10 N

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 20 \, \text{kg} \)
  • Initial velocity, \( u = 0 \, \text{m/s} \) (starts from rest)
  • Time of force application, \( t_1 = 20 \, \text{s} \)
  • Distance traveled after force ceases, \( s = 50 \, \text{m} \) in \( t_2 = 10 \, \text{s} \)

After the force ceases, the body moves with constant velocity (no acceleration, assuming no other forces like friction). The velocity \( v \) at the end of 20 s becomes the constant velocity for the next 10 s.

Distance traveled at constant velocity:

\[ s = v \cdot t_2 \]

\[ 50 = v \cdot 10 \]

\[ v = \frac{50}{10} = 5 \, \text{m/s} \]

Now, this velocity \( v = 5 \, \text{m/s} \) is achieved after the force acts for 20 s. Using the equation of motion during the force application:

\[ v = u + a \cdot t_1 \]

\[ 5 = 0 + a \cdot 20 \]

\[ a = \frac{5}{20} = 0.25 \, \text{m/s}^2 \]

The force \( F \) is related to acceleration by Newton's second law:

\[ F = m \cdot a \]

\[ F = 20 \cdot 0.25 = 5 \, \text{N} \]

Final Answer: B. 5 N

Question 2

The time taken by an object to slide down a 45° rough inclined plane is \( n \) times that on a perfectly smooth 45° inclined plane. What is the coefficient of kinetic friction between the object and the inclined plane? [29-Jan-2023 Shift 2]

  • A. \( \sqrt{\frac{1}{1 - n^2}} \)
  • B. \( \sqrt{1 - \frac{1}{n^2}} \)
  • C. \( {1 + \frac{1}{n^2}} \)
  • D. \( {1 - \frac{1}{n^2}} \)

Show Answer

Detailed Solution:

Given: Angle of inclination \( \theta = 45^\circ \), time on rough plane \( t_{\text{rough}} = n \cdot t_{\text{smooth}} \).

Smooth Plane:

Acceleration, \( a_{\text{smooth}} = g \sin \theta \), where \( \sin 45^\circ = \frac{\sqrt{2}}{2} \), so \( a_{\text{smooth}} = g \cdot \frac{\sqrt{2}}{2} \).

Starting from rest, distance \( s = \frac{1}{2} a t^2 \):

\[ s = \frac{1}{2} a_{\text{smooth}} t_{\text{smooth}}^2 \]

Rough Plane:

Net acceleration, \( a_{\text{rough}} = g \sin \theta - \mu_k g \cos \theta \).

For \( \theta = 45^\circ \), \( \sin \theta = \cos \theta = \frac{\sqrt{2}}{2} \), so:

\[ a_{\text{rough}} = g \cdot \frac{\sqrt{2}}{2} - \mu_k g \cdot \frac{\sqrt{2}}{2} = \frac{g \sqrt{2}}{2} (1 - \mu_k) \]

Distance: \( s = \frac{1}{2} a_{\text{rough}} t_{\text{rough}}^2 \), and \( t_{\text{rough}} = n t_{\text{smooth}} \).

Since \( s \) is the same:

\[ \frac{1}{2} a_{\text{smooth}} t_{\text{smooth}}^2 = \frac{1}{2} a_{\text{rough}} (n t_{\text{smooth}})^2 \]

\[ a_{\text{smooth}} = a_{\text{rough}} n^2 \]

\[ \frac{g \sqrt{2}}{2} = \frac{g \sqrt{2}}{2} (1 - \mu_k) n^2 \]

\[ 1 = (1 - \mu_k) n^2 \]

\[ 1 - \mu_k = \frac{1}{n^2} \]

\[ \mu_k = 1 - \frac{1}{n^2} \]

Final Answer: D. \({1 - \frac{1}{n^2}} \)

Question 3

A stone tied to a 180 cm long string makes 28 revolutions per minute in a horizontal circle. The magnitude of acceleration is \( \frac{1936}{x} \, \text{m/s}^2 \). Find \( x \). Take \( \pi = \frac{22}{7} \). [30-Jan-2023 Shift 2]

Show Answer

Detailed Solution:

Given:

  • Length of string, \( r = 180 \, \text{cm} = 1.8 \, \text{m} \)
  • Revolutions per minute = 28
  • \( \pi = \frac{22}{7} \)

Convert to revolutions per second: \( \frac{28}{60} = \frac{7}{15} \, \text{rev/s} \).

Angular velocity, \( \omega = 2\pi \cdot \frac{7}{15} = \frac{14 \cdot \frac{22}{7}}{15} = \frac{44}{15} \, \text{rad/s} \).

Centripetal acceleration, \( a_c = \omega^2 r \):

\[ \omega^2 = \left( \frac{44}{15} \right)^2 = \frac{1936}{225} \]

\[ a_c = \frac{1936}{225} \cdot 1.8 = \frac{1936}{225} \cdot \frac{9}{5} = \frac{1936 \cdot 9}{225 \cdot 5} = \frac{17424}{1125} \]

Simplify: \( \frac{17424}{1125} = \frac{1936 \cdot 9}{125 \cdot 9} = \frac{1936}{125} \).

Given \( a_c = \frac{1936}{x} \), so \( \frac{1936}{125} = \frac{1936}{x} \), thus \( x = 125 \).

Final Answer: 125

Question 4

A lift of mass 500 kg descends at 2 m/s. The cable slips, causing it to fall with a constant acceleration of 2 m/s² over 6 m. What is the kinetic energy at the end in kJ? [31-Jan-2023 Shift 1]

Show Answer

Detailed Solution:

Given:

  • Mass, \( M = 500 \, \text{kg} \)
  • Initial velocity, \( u = 2 \, \text{m/s} \) (downward)
  • Acceleration, \( a = 2 \, \text{m/s}^2 \) (downward)
  • Distance, \( s = 6 \, \text{m} \)

Final velocity: \( v^2 = u^2 + 2 a s \)

\[ v^2 = 2^2 + 2 \cdot 2 \cdot 6 = 4 + 24 = 28 \]

\[ v = \sqrt{28} = 2\sqrt{7} \, \text{m/s} \]

Kinetic energy, \( KE = \frac{1}{2} M v^2 = \frac{1}{2} \cdot 500 \cdot 28 = 250 \cdot 28 = 7000 \, \text{J} = 7 \, \text{kJ} \).

Final Answer: 7 kJ

Question 5

A 1 kg stone is tied to a 1 m massless string with a breaking tension of 400 N. What is the maximum linear velocity without breaking the string in a horizontal plane? [31-Jan-2023 Shift 2]

  • A. 20 m/s
  • B. 40 m/s
  • C. 400 m/s
  • D. 10 m/s

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 1 \, \text{kg} \)
  • Length (radius), \( r = 1 \, \text{m} \)
  • Maximum tension, \( T_{\text{max}} = 400 \, \text{N} \)

Tension provides centripetal force: \( T = \frac{m v^2}{r} \).

\[ 400 = \frac{1 \cdot v^2}{1} \]

\[ v^2 = 400 \]

\[ v = 20 \, \text{m/s} \]

Final Answer: A. 20 m/s

Question 6

A 10 kg body moving at 20 m/s stops in 5 s due to friction. What is the coefficient of friction? (\( g = 10 \, \text{m/s}^2 \)) [31-Jan-2023 Shift 2]

  • A. 0.2
  • B. 0.3
  • C. 0.5
  • D. 0.4

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 10 \, \text{kg} \)
  • Initial velocity, \( u = 20 \, \text{m/s} \)
  • Final velocity, \( v = 0 \, \text{m/s} \)
  • Time, \( t = 5 \, \text{s} \)
  • \( g = 10 \, \text{m/s}^2 \)

Acceleration: \( v = u + a t \)

\[ 0 = 20 + a \cdot 5 \]

\[ a = -4 \, \text{m/s}^2 \]

Friction force, \( f = m |a| = 10 \cdot 4 = 40 \, \text{N} \).

Normal force, \( N = m g = 10 \cdot 10 = 100 \, \text{N} \).

\[ f = \mu N \]

\[ 40 = \mu \cdot 100 \]

\[ \mu = 0.4 \]

Final Answer: D. 0.4

Question 7

A 5 kg block at rest on a rough table is pushed with 30 N, sliding 50 m in 10 s. What is the coefficient of kinetic friction? (\( g = 10 \, \text{m/s}^2 \)) [1-Feb-2023 Shift 1]

  • A. 0.60
  • B. 0.75
  • C. 0.50
  • D. 0.25

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 5 \, \text{kg} \)
  • Force, \( F = 30 \, \text{N} \)
  • Distance, \( s = 50 \, \text{m} \)
  • Time, \( t = 10 \, \text{s} \)
  • Initial velocity, \( u = 0 \)
  • \( g = 10 \, \text{m/s}^2 \)

Acceleration: \( s = u t + \frac{1}{2} a t^2 \)

\[ 50 = 0 + \frac{1}{2} a \cdot 10^2 \]

\[ a = 1 \, \text{m/s}^2 \]

Net force: \( F - f = m a \)

\[ 30 - \mu_k \cdot 5 \cdot 10 = 5 \cdot 1 \]

\[ 30 - 50 \mu_k = 5 \]

\[ 50 \mu_k = 25 \]

\[ \mu_k = 0.5 \]

Final Answer: C. 0.50

Question 8

A 100 g block is tied to a 7.5 N/m spring of length 20 cm, fixed at point A. It moves in a circle on a smooth horizontal surface with \( \omega = 5 \, \text{rad/s} \) about A. What is the tension? [6-Apr-2023 Shift 1]

  • A. 0.75 N
  • B. 1.5 N
  • C. 0.25 N
  • D. 0.50 N

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 0.1 \, \text{kg} \)
  • Spring constant, \( k = 7.5 \, \text{N/m} \)
  • Natural length, \( l = 0.2 \, \text{m} \)
  • Angular velocity, \( \omega = 5 \, \text{rad/s} \)

Tension = centripetal force: \( T = m \omega^2 r \).

Tension also: \( T = k (r - l) \).

\[ m \omega^2 r = k (r - l) \]

\[ 0.1 \cdot 25 \cdot r = 7.5 (r - 0.2) \]

\[ 2.5 r = 7.5 r - 1.5 \]

\[ r = 0.3 \, \text{m} \]

\[ T = 7.5 (0.3 - 0.2) = 0.75 \, \text{N} \]

Check: \( T = 0.1 \cdot 25 \cdot 0.3 = 0.75 \, \text{N} \).

Final Answer: A. 0.75 N

Question 9

A 500 g particle has velocity \( (2t \hat{i} + 3t^2 \hat{j}) \, \text{m/s} \). Force at \( t = 1 \, \text{s} \) is \( (\hat{i} + x \hat{j}) \, \text{N} \). Find \( x \). [8-Apr-2023 Shift 1]

  • A. 2
  • B. 6
  • C. 3
  • D. 4

Show Answer

Detailed Solution:

Given:

  • Mass, \( m = 0.5 \, \text{kg} \)
  • Velocity, \( \vec{v} = 2t \hat{i} + 3t^2 \hat{j} \)

Acceleration: \( \vec{a} = \frac{d\vec{v}}{dt} = 2 \hat{i} + 6t \hat{j} \).

At \( t = 1 \): \( \vec{a} = 2 \hat{i} + 6 \hat{j} \).

Force: \( \vec{F} = m \vec{a} = 0.5 (2 \hat{i} + 6 \hat{j}) = \hat{i} + 3 \hat{j} \).

Given \( \vec{F} = \hat{i} + x \hat{j} \), so \( x = 3 \).

Final Answer: C. 3

Question 10

Assertion A: An electric fan continues to rotate after the current is switched off.
Reason R: The fan continues due to inertia of motion. Choose the correct option. [10-Apr-2023 Shift 2]

  • A. A is not correct but R is correct
  • B. Both A and R are correct and R explains A
  • C. Both A and R are correct but R does not explain A
  • D. A is correct but R is not correct

Show Answer

Detailed Solution:

Assertion A is true: fans continue rotating due to inertia.

Reason R is true: inertia of motion (Newton’s first law) explains this.

R correctly explains A.

Final Answer: B. Both A and R are correct and R is the correct explanation of A


Post a Comment

0 Comments